Journal of Chromatography A. 697 (1995) 247-250 # Short communication # Simple stationary phases derived from gluconolactone for chiral high-performance liquid chromatography K.M. Maher^a, D.R. Taylor^{a,*}, H.J. Ritchie^b *Chemistry Department, UMIST, P.O. Box 88, Manchester M60 1QD, UK *Shandon HPLC, Astmoor, Runcorn, Cheshire WA7 1PR, UK #### **Abstract** A new family of chiral stationary phases (CSPs) have been prepared by chemical modification of $\text{p-}\delta$ -gluconolactone with ring opening. They were chemically bonded to $5-\mu\text{m}$ microporous silica and evaluated as column packing materials for chiral analysis by HPLC. The best was the CSP in which the hydroxyl groups derived from the ring-opened gluconolactone were converted to carbamate residues using a naphthylethyl isocyanate. #### 1. Introduction Lactones have been used in the preparation of chiral stationary phases (CSPs) [1] for HPLC and as chiral analytes [2] in GC. These applications demonstrate their ability to take part in chiral recognition processes with either an open chain or a closed ring system. With the earlier work of Lourenco [3] in mind, a number of novel CSPs for HPLC were synthesised from a cheap and readily available carbohydrate, D-δ-gluconolactone (I). # 2. Experimental #### 2.1. Instrumentation The HPLC system consisted of a Shimadzu LC-5A single-head pump, Rheodyne 7125 manual injector valve and Cecil Instruments CE 212 variable-wavelength UV monitor (254 nm). #### 2.2. Materials HPLC-grade solvents were obtained from Rathburn. N-3,5-Dinitrobenzoyl (DNB) derivatives of various amino acids (Aldrich and Janssen) were synthesised at UMIST using established methods [4]. Hypersil silica (5 μ m) was supplied by Shandon HPLC. # 2.3. Preparation of CSPs CSPs 1-5 were prepared according to Fig. 1. The synthesis involved nucleophilic ring opening of the lactone (I) with allylamine, followed by acetylation and conversion to an active silane ^{*} Corresponding author. Fig. 1. Synthesis of novel CSP from gluconolactone. RO = Aryl-NH-(CO)-O and HO, according to Table 1. Reagents: A = allylamine; $B = Ac_2O$; $C = (MeO)_3Si(CH_2)_3SH$; D = silica; $E = Me_3SiCl$; $F = NH_3 - MeOH$; G = aryl isocyanate. derivative. The acetylated silane (II) was bonded to 5- μ m Hypersil silica. Residual silanols on the silica surface were then end-capped with trimethylsilyl (TMS) chloride. This was followed by deacetylation and carbamate formation. The CSPs were then packed into standard steel HPLC columns (15 cm \times 4.5 mm I.D.) by Shandon HPLC. ## 3. Results and discussion The surface coverages of the phases were estimated from their % carbon contents. CSP 1 contained 237 μ mol of chiral selector and 422 μ mol of TMS groups per gram of silica. The corresponding values for CSP 2 were 274 and 174 μ mol g⁻¹. The chiral selector strands on CSPs 3–5 were not fully carbamated: the ratios of carbamate to hydroxyl groups on these phases are shown in Table 1. Some reasonable separations were obtained on the acetylated phase, CSP 1. The chromatograms of a series of racemic N-3,5-DNB-amino acid methyl esters (III-VIII) on this phase are presented in Fig. 2. The hydroxyl-containing phase, CSP 2, showed very poor enantioselectivity. The carbamate phases (CSPs 3-5) all afforded better enantioresolutions than CSP 1. Fig. 3 compares the α values for the same amino acid derivatives on the carbamate CSPs. As the carbamate is made more electron-rich from phenyl (CSP 3) to dimethylphenyl (CSP 4) to naphthylethyl (CSP 5), the separation of these electron-deficient analytes improves. This suggests that a π - π interaction is important in the chiral recognition process on these CSPs. Fig. 4 shows the resolution of the racemic samples (III-VIII) on the best performing phase, CSP 5. Table 1 Structures of carbamate CSPs | Phase | OR group on strands of chiral selector | Concentration of strands | Concentration of TMS | OR:OH ratio on chiral strand | |-------|--|--------------------------|----------------------|------------------------------| | CSP 3 | 0
0-C | 270 | 170 | 3.1:1.9 | | CSP 4 | O-C-NH-Me | 270 | 170 | 2.3:2.7 | | CSP 5 | O C NH CH CH ₃ | 180 | 70 | 1.0:4.0 | Concentrations are reported as μ mol per gram of silica gel. Average ratios of OR:OH groups on the chiral strands are also quoted. Fig. 2. Chromatograms of racemic N-3.5-DNB-amino acid methyl esters on CSP 1. Mobile phase: tetrahydrofuran (THF)-*n*-hexane (15:85) at 1.0 ml min⁻¹. Fig. 3. Comparison of the α values for the racemic N-3,5-DNB-amino acid methyl esters on the carbamate phases CSP 3 (\square), CSP 4 (\spadesuit) and CSP 5 (\blacksquare). Mobile phase: THF-*n*-hexane (25:75) at 1.0 ml min⁻¹. # 4. Conclusions A family of simple CSPs for HPLC were prepared from a cheap and readily available starting material, $\text{D-}\delta\text{-gluconolactone}$. These chiral stationary phases were used to separate the enantiomers of amino acid derivatives that contained the electron-deficient 3,5-DNB group. The phase that shows the most commercial promise (CSP 5) contains the naphthylethyl carbamate functionality. Fig. 4. Chromatograms of racemic N-3,5-DNB-amino acid methyl esters on CSP 5. Mobile phase as in Fig. 3. # Acknowledgements We gratefully acknowledge the financial assistance provided by Shandon HPLC, a division of Life Sciences International, and also by SERC (for a Total Technology studentship for K.M.M.). # References - [1] D. Lohmann and R. Dappen, Chirality, 5 (1993) 168. - [2] S. Brochu et al., Polymer Bull., 30 (1993) 223. - [3] W. Lourenco, Ph.D. Thesis, UMIST, Manchester, UK (1989). - [4] W.H. Pirkle and C.J. Welch, J. Org. Chem., 49 (1984) 138.